63 research outputs found

    Droplet motion driven by surface freezing or melting: A mesoscopic hydrodynamic approach

    Full text link
    A fluid droplet may exhibit self-propelled motion by modifying the wetting properties of the substrate. We propose a novel model for droplet propagation upon a terraced landscape of ordered layers formed as a result of surface freezing driven by the contact angle dependence on the terrace thickness. Simultaneous melting or freezing of the terrace edge results in a joint droplet-terrace motion. The model is tested numerically and compared to experimental observations on long-chain alkane system in the vicinity of the surface melting point.Comment: 4 pages, 3 figure

    Generation of finite wave trains in excitable media

    Full text link
    Spatiotemporal control of excitable media is of paramount importance in the development of new applications, ranging from biology to physics. To this end we identify and describe a qualitative property of excitable media that enables us to generate a sequence of traveling pulses of any desired length, using a one-time initial stimulus. The wave trains are produced by a transient pacemaker generated by a one-time suitably tailored spatially localized finite amplitude stimulus, and belong to a family of fast pulse trains. A second family, of slow pulse trains, is also present. The latter are created through a clumping instability of a traveling wave state (in an excitable regime) and are inaccessible to single localized stimuli of the type we use. The results indicate that the presence of a large multiplicity of stable, accessible, multi-pulse states is a general property of simple models of excitable media.Comment: 6 pages, 6 figure

    Modelling the evaporation of thin films of colloidal suspensions using Dynamical Density Functional Theory

    Get PDF
    Recent experiments have shown that various structures may be formed during the evaporative dewetting of thin films of colloidal suspensions. Nano-particle deposits of strongly branched `flower-like', labyrinthine and network structures are observed. They are caused by the different transport processes and the rich phase behaviour of the system. We develop a model for the system, based on a dynamical density functional theory, which reproduces these structures. The model is employed to determine the influences of the solvent evaporation and of the diffusion of the colloidal particles and of the liquid over the surface. Finally, we investigate the conditions needed for `liquid-particle' phase separation to occur and discuss its effect on the self-organised nano-structures

    Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field

    Get PDF
    Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 106 A·cm−2, or about 1 × 1025 electrons s−1 cm−2. This relatively high current density significantly affects the devices’ structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 1013 electrons per cm2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions

    Coupling effects in QD dimers at sub-nanometer interparticle distance

    Get PDF
    Currently, intensive research efforts focus on the fabrication of meso-structures of assembled colloidal quantum dots (QDs) with original optical and electronic properties. Such collective features originate from the QDs coupling, depending on the number of connected units and their distance. However, the development of general methodologies to assemble colloidal QD with precise stoichiometry and particle-particle spacing remains a key challenge. Here, we demonstrate that dimers of CdSe QDs, stable in solution, can be obtained by engineering QD surface chemistry, reducing the surface steric hindrance and favoring the link between two QDs. The connection is made by using alkyl dithiols as bifunctional linkers and different chain lengths are used to tune the interparticle distance from few nm down to 0.5 nm. The spectroscopic investigation highlights that coupling phenomena between the QDs in dimers are strongly dependent on the interparticle distance and QD size, ultimately affecting the exciton dissociation efficiency. [Figure not available: see fulltext.]

    Room-Temperature Inter-Dot Coherent Dynamics in Multilayer Quantum Dot Materials

    Get PDF
    The full blossoming of quantum technologies requires the availability of easy-to-prepare materials where quantum coherences can be effectively initiated, controlled, and exploited, preferably at ambient conditions. Solid-state multilayers of colloidally grown quantum dots (QDs) are highly promising for this task because of the possibility of assembling networks of electronically coupled QDs through the modulation of sizes, inter-dot linkers, and distances. To usefully probe coherence in these materials, the dynamical characterization of their collective quantum mechanically coupled states is needed. Here, we explore by two-dimensional electronic spectroscopy the coherent dynamics of solid-state multilayers of electronically coupled colloidally grown CdSe QDs and complement it by detailed computations. The time evolution of a coherent superposition of states delocalized over more than one QD was captured at ambient conditions. We thus provide important evidence for inter-dot coherences in such solid-state materials, opening up new avenues for the effective application of these materials in quantum technologies

    Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates

    Get PDF
    It is commonly assumed that recognition and discrimination of chirality, both in nature and in artificial systems, depend solely on spatial effects. However, recent studies have suggested that charge redistribution in chiral molecules manifests an enantiospecific preference in electron spin orientation. We therefore reasoned that the induced spin polarization may affect enantiorecognition through exchange interactions. Here we show experimentally that the interaction of chiral molecules with a perpendicularly magnetized substrate is enantiospecific. Thus, one enantiomer adsorbs preferentially when the magnetic dipole is pointing up, whereas the other adsorbs faster for the opposite alignment of the magnetization. The interaction is not controlled by the magnetic field per se, but rather by the electron spin orientations, and opens prospects for a distinct approach to enantiomeric separations

    In-Silico Patterning of Vascular Mesenchymal Cells in Three Dimensions

    Get PDF
    Cells organize in complex three-dimensional patterns by interacting with proteins along with the surrounding extracellular matrix. This organization provides the mechanical and chemical cues that ultimately influence a cell's differentiation and function. Here, we computationally investigate the pattern formation process of vascular mesenchymal cells arising from their interaction with Bone Morphogenic Protein-2 (BMP-2) and its inhibitor, Matrix Gla Protein (MGP). Using a first-principles approach, we derive a reaction-diffusion model based on the biochemical interactions of BMP-2, MGP and cells. Simulations of the model exhibit a wide variety of three-dimensional patterns not observed in a two-dimensional analysis. We demonstrate the emergence of three types of patterns: spheres, tubes, and sheets, and show that the patterns can be tuned by modifying parameters in the model such as the degradation rates of proteins and chemotactic coefficient of cells. Our model may be useful for improved engineering of three-dimensional tissue structures as well as for understanding three dimensional microenvironments in developmental processes.National Institutes of Health (U.S.) (GM69811)United States. Dept. of Energy (DOE CSGF fellowship
    • …
    corecore